1990年代末期中国开启房地产市场化改革以来,房地产行业蓬勃发展,对于加快城市化进程,推动经济高速增长起到了有目共睹的巨大作用,但也逐步产生和积累了以高房价、高杠杆、高债务等为标志的严重问题,越来越难以持续。概括而言,在过去二十多年的时间中逐步形成的房地产业务模式具有几个方面的内在缺陷,需要得到系统性纠正:
一、房地产公司的日益金融化是传统业务模式的首要缺陷
一方面,快速的城市化进程产生了巨大和持续增长的房地产需求,另一方面,单个房地产项目在商业上的成败存在许多不确定性,也难以收获规模效益,因此,同时开发多个项目的房地产公司开始获得竞争上的优势,这表现在业务的许多方面:
首先,正如“不要把鸡蛋放在一个篮子里”的格言所展示的那样,分散的多个项目之间相互平衡和抵消,可以降低总体业务的波动性,在给定风险暴露的条件下提高资本的回报率和债务的安全性。
其次,由于前述原因,以及金融市场普遍存在“大则不倒”的假设,庞大的业务规模可以帮助房地产公司以更低的成本融资,从而形成正向循环。
再次,众多项目之间销售和施工进度之间存在差异,由此产生的资金余缺可以相互调剂,这提高了资金的使用效率。更重要的是,由于单个项目以独立法人的形式存在,资金在项目之间的横向调拨形成了某种形式的信用创造和信用扩张机制,使得房地产业务开始具有一定的类银行的金融属性。
我们知道,银行信用创造的关键是部分准备制度,即银行把收到的存款的一部分以现金的形式持有,作为应付未来提款的准备金,其余的存款则用于放贷,从而形成新的存款,在这一过程中创造和扩张了信用。
类似地,房地产项目A把收到的预售资金的一部分贷放给项目B,形成项目B的资金来源。项目B将此用于土地购买,以及进一步的抵押和借款活动,在这一过程中,信用被创造和放大。在这一意义上,房地产业务具有了类银行的金融属性。
最后,持续的经济发展和城市化进程等因素推动了房价和地价的持续上升,使得持有土地和房地产项目可以获得较为稳定的增值收益,这诱使房地产公司通过提高杠杆来增加土地和项目的持有,从而进一步增强了房地产的金融属性。为了应对多变的政策环境和房地产市场的周期性起伏,房地产公司进一步发展了所谓的高周转模式,即在预期短期市场形势较好的条件下,通过短期借款迅速放大供应,提高周转率;在市场形势转差的时候则收缩借贷,降低供应。在资金融通和调度顺畅的条件下,这充分提高了资本的回报率,但也使得在房地产形势较好的条件下,包括大量短期借款在内的杠杆率被推升到异常高的水平,金融属性进一步强化。
由于以上因素的综合作用,中国的房地产公司逐步发展为类金融机构,具有了高杠杆、流动性转换、期限转换和信用创造等金融业务的关键功能和特征。
金融史的发展告诉我们,金融业务具有内在的不稳定性,必须通过中央银行的建立和以必要的资本充足率及充分的信息披露为核心的严格金融监管来应对。
中国房地产市场当前的困境,一般地说,可以认为是其金融属性内在不稳定性的集中反映。
金融史的发展同样告诉我们,应对当前房地产行业的困难局面,需要充分考虑其业务发展中业已形成的金融属性。这形成了两种不同的应对思路:一是以项目为中心的行业救助,并逐步彻底去除房地产的金融属性。
这种思路的挑战在于:一方面项目之间相互平衡的优势和规模效益无法实现,随着救助过程的展开,剩余的项目越来越集中为高风险项目,难以处理;
另外一方面这形成了行业内快速和严重的信用收缩,具有极强的外部性和传染性。二是救主体和救项目并重,一方面通过注资和债务重组来稳定和充实主体的资产负债表,维持其业已存在的各类功能,另外一方面通过建立类金融业务的监管框架加强对大型主体的全面监管,进一步稳定市场信心,并逐步控制和化解系统性风险。
二、越来越统一的全国劳动力市场与高度碎片化的土地供应制度之间的矛盾是房地产传统业务模式的另外一大缺陷
中国房地产市场的需求方是分散并自由流动的城市居民,具有高度市场化的特点,但关键要素的土地供应由地方政府作为单一主体来实施,具有很强的计划性。
由此产生的问题是:在需求快速扩张时,供应不能及时充分响应,从而放大了地价和房价的上升压力。更大的问题是,对于人口大量集聚的城市政府而言,缩减土地供应甚至可以带来更高的土地收益,这是垄断经济的一个自然特点,但无疑加剧了房地产市场的压力。
从数据上看,一些大型城市的年度供地持续低于计划目标,其原因似乎并非广泛的土地流拍,而是较少的土地供应足以实现年度的土地收入目标。
更一般地看,2016-2021年期间全国范围的房地产价格大幅上涨引起了广泛的关注和讨论,许多分析将此与棚改货币化联系起来,这也许是有道理的。
然而,我们曾经将中国的部分三四线城市分解为两个组别,一个是实施了棚改货币化的城市组;一个是没有实施棚改货币化的城市组。
结果发现,前者的房价表现并不显著强于后者,这为棚改货币化的解释投下了不小的阴影。实际上,从广泛的数据看,我们更倾向于认为,棚改货币化是一个内生的去存货政策:即存货压力更大的城市更倾向于进行棚改货币化。因此,对于存货较少的城市而言,一方面房价更容易上涨,一方面地方政府进行棚改货币化的意愿也不很强烈,这样,房价与棚改之间的关系并非一目了然。
也许很少人注意到的事实是:在这段时期,在人口流入和城市化规模继续扩大的同时,中国大量城市的土地供应经历了普遍和持续的收缩,这与同期中国广泛的房价上涨之间的联系无疑是耐人寻味的。
更进一步看,中国的土地供应由地方政府主导,是高度碎片化的,而劳动力市场越来越统一,人口在全国范围内自由流动,这不可避免地带来了土地市场的扭曲和资源配置的低效。在守住耕地红线的约束下,全国的供地指标以计划的形式下达给地方,尽管在人口集中流入的城市,土地的单位经济效益显著更大,但这些地区却无法从落后地区腾挪和获得供地的配额。
在通常的情况下,这显然会加剧发达地区的房价上涨压力。此外,2012年以来,中国的人口开始向中心城市和发达地区聚集,给这些地区带来了更大的土地收入,但同时降低了人口流出地区的潜在土地收益,形成或者扩大了地区之间财政收入的不平衡。地方政府的债务大多以土地的价值和潜在收益为抵押,但潜在的债务风险又需要中央政府兜底或承担相当的救助义务,形成道德风险。
为了解决这些问题,需要考虑三个方面的措施:
一是有意识地增加土地供应的弹性,根据房地产市场的发展和人口流动情况适时增加或减少土地供应,将土地和当下房价监管机制更紧密地联动起来。
二是建立全国统一的土地配额交易市场,就像碳配额和电力交易一样,由各地区自愿相互交易自己的年度土地配额,实现土地要素的市场化定价和全国统一配置;在必要时,也可以由中央政府追加和拍卖部分土地配额,以稳定土地市场。例如单位土地配额在西部地区的经济价值也许是一万元;在沿海地区也许是十万元。配额在两个地区之间进行交易,西部可以获得超过一万元的经济收益;沿海地区也同时收获了更高的经济价值,形成互利共赢。三是将卖地收入调整为中央与地方共享的收入,用于调节地区之间的财力平衡、化解地方债务风险和解决包括保障性住房在内的其他民生目标。
三、保障性住房供应不足是房地产传统模式的又一大缺陷在城市化进程快速发展,房价总体不断上涨的过程中,一般居民自然希望通过参与商品房市场来分享这一红利,这强化了商品房在资产配置中的金融属性,降低了保障性住房的吸引力;对于地方政府而言,考虑到建设保障性住房的机会成本、以及失去的土地收益等因素,其提供保障性住房的意愿似乎也不够充分,这可能部分解释了过去二十多年保障性住房供应不足的情况。
由此形成的问题是明显的:一方面高企的房价使得城市低收入者、新进城的农民工群体和青年人无法实现合意的居住条件,另外一方面着眼于资产配置和房价上升的商品房持有又带来了一定数量的房屋空置,形成资源的浪费。两相对比,还容易形成社会压力。疫情以来,由于一系列内外条件的变化,居民对未来收入和房价的预期似乎正在发生较大的调整,表现为消费活动的走弱和安全资产的走强。在一手房市场的供应大幅度收缩的条件下,二手房市场交易量维持在非常高的水平,但价格明显下调,显示了配置型需求可能在趋势转弱。这有助于缓解资源闲置和低效配置的浪费,也可能鼓励居民对保障性住房更大的兴趣。
在这样的情况下,对商品房交易的各类限制也许应该逐步清除,并在必要时转向对部分地区和市场的持有环节的干预,例如空置税等;为了提高地方政府提供保障性住房的积极性和缓解财政压力,中央政府也许应该考虑提供必要的补偿和激励。
关于中国消费者行为变化的事件研究
——对2021年以来疫情和地产冲击的实证分析
高善文团队
袁方,魏薇
2024年10月13日
内容提要
我国当前面临着总需求不足的局面,其中消费驱动不足的问题日益凸显。这一变化的根源在于疫情、地产等冲击对居民的收入和财富构成了深刻影响,从而引发了消费活动的收缩。我们基于宏观经济数据,将2021年视为冲击影响开始的时点,利用面板回归来尽可能控制相关条件,为上述逻辑提供了实证证据。
回归发现,2021年以来,收入效应与财富效应都驱动了居民消费行为趋于谨慎。2021年以来与退休人群相比,收入波动更大、财富积累更少的工作人群消费降速更多,这表明收入效应的影响更为主导。这种变化的背后不仅是当期预算约束的收紧,也是居民对收入不确定性的担忧和预期的下行,而收入预期的下行进一步强化了地产需求的收缩,与财富效应互相强化。
疫情以来,我国将产业结构的转型升级作为稳定长期增长的主要调节手段,然而就业质量提升的速度明显落后于新旧动能转换的速度,其中地产行业过快收缩的影响尤为重要。因此,保证各行业就业的平稳过渡、稳定收入增长预期是促进消费增长、提振内需的关键,而解决地产行业流动性危机、修复地产预期是稳定收入增长预期的必要条件。
风险提示:地缘政治风险,政策超预期
一、背景与方法介绍
当前,中国经济总体增速偏缓,总需求偏弱,实现经济转型是促进经济增长的有力措施。若将经济转型的过程分为两个方向,其一为向更高的产业结构转型,另一则为向更高的消费驱动转型。目前产业结构转型非常稳健,而转向更高消费驱动的转型动力不足。[1]
这一变化的根源在于疫情、地产等冲击对居民的收入和财富构成了深刻影响,引发了消费活动的收缩,这正是当前总需求不足的重要背景之一。
2021年以来,中国居民总体消费增速发生了明显下降。这一现象的主要背景有两个方面。一方面,2021-2022年居民的工作与出行受到疫情管控的持续影响,此后在缺乏财政有效刺激的情况下基本面修复也并不顺畅,疤痕效应延续至今。另一方面,2021年以来房地产企业面临流动性危机,房地产行业出现大幅调整,房价持续下跌使得居民财富出现严重缩水。前者使得消费者的劳动性收入与收入预期明显降低,后者则使得消费者的财富与财产性收入大幅减少,二者都是导致居民消费能力与消费意愿降低的重要原因。
那么,在近年来消费者行为的变化过程中,哪种因素的影响更为关键?
观察两个单一变量的相关性似乎难以对这一问题进行解答。一方面,疫情以来居民的收入与财富同时发生变化,且具有一定的相关性;另一方面,有许多其他因素也会对居民消费产生影响,例如在社会保障条件不足的情况下居民会进行预防性储蓄、减少消费。因此,本文基于实证回归的研究方法,在尽可能控制其他条件不变的情况下,探究我们关心的变量的影响。
我们基于2016-2024年全国30个省份的年度面板数据进行回归分析。回归的关键自变量为居民收入和房价的同比变化,因变量为消费的同比变化,同时控制人口流动、城镇化率和社会保障水平等相关变量。为了对比2021年前后自变量与因变量相关关系的变化情况,我们利用时间虚拟变量对2021年前、后两个时段进行控制与比较。
回归发现,2021年以来居民消费对收入与财富的弹性都发生了显著的变化,表现为同样幅度的收入增长带来了更少的消费增长,和同样幅度的资产价格下跌带来了更大幅度的消费收缩。我们进一步使用工作人口占比作为代理变量进行回归,发现2021年以来与退休人群相比,收入波动更大、财富积累更少的工作人群消费增速下降更多。这表明,收入效应与财富效应都驱动了居民消费行为趋于谨慎,而收入效应的影响更为主导。
接下来,我们对模型的设定细节与回归结果的经济学含义解读进行展开。
二、模型设定
本文基于2016-2024年省份-年度层面数据进行回归分析,覆盖全国30个省份(不包括西藏),其中2024年使用上半年的累计同比数据,回归模型如下:
其中,等式左侧consumption项为给定年份的社会消费品零售总额同比,用于代理居民消费情况。
右侧key_factor为本文关心的影响因素,如房屋价格变化(使用省会城市二手住宅价格指数同比作为代理变量),收入变化(使用各省人均可支配收入同比作为代理变量)等等。
右侧year_after2021为时间虚拟变量。考虑到疤痕效应和房地产行业调整主要出现在2021年之后,我们以2021年为分界点,year_after2021在2021年以前取0,在2021年及之后取1。
右侧key_factor×year_after2021为本文关心的影响因素与时间虚拟变量的交互项,本文主要关注这一项的系数估计。回归系数φ的经济学含义为,关键自变量对消费的影响在2021年前后是否显著不同。
右侧控制变量controls包括省份常住人口同比增速、城镇化率和病床数对数,主要用于控制不同省份随时间变化且会对消费产生影响的特征。其中,常住人口同比增速用于控制人口规模变化本身带来的消费量的变化。
城镇化率用于控制不同地区的老龄化水平及经济潜在增速,一般而言城镇化率更高的地区老龄化水平更高,经济潜在增速更低。由于社会消费品零售总额同比具有明显的时间趋势,控制城镇化率也有助于剥离趋势影响。
病床数对数用于代理当地医疗卫生条件和社会保障水平,我们控制这一变量来缓解不同地区社会保障差异带来的预防性储蓄差异的影响。右侧最后一项ε为随机扰动。
由于部分控制变量数据未更新至2024年,我们基于疫情以来的数据进行了线形外推,对回归结果的影响可忽略不计。
三、实证结果
我们首先分别检验收入与消费、房价与消费的关系,再将两者放入同一回归,来验证系数估计的稳健性。
表1展示了疫情前后居民人均可支配收入与消费的关系。在前两列中,我们不使用交互项,直接对疫情前三年与后三年分段进行回归,来确认疫情前后收入与消费的关系。最后一列中,我们使用前述包含交互项的模型对全部年份进行回归,来检验疫情前后这一关系的差异是否显著。
表1第1、2列中,人均可支配收入同比的系数的经济学含义为居民消费对收入的弹性,即其他条件不变的情况下,可支配收入同比每增加1个百分点对应的消费同比变化。
可以看到,疫情前后人均可支配收入同比的系数均为正且在1%水平上显著,但第2列中这一系数略小于第1列。这一结果说明,居民消费对收入的弹性显著为正,但疫情后这一弹性有所降低,即同样幅度的收入增长带来的消费增长有所减少。
那么这一弹性的减少幅度在统计学意义上是否显著?
第3列中“year2021人均可支配收入同比”系数显著为负,表明第2列与第1列系数的差在1%水平上显著小于0,即与疫情前相比,面对同样幅度的收入增长,疫情以来居民消费增长幅度显著下降,即居民消费倾向显著降低。
此外,与第1列相比,第2、3列回归的R2大幅提高,即在其他条件不变的情况下,居民收入的变化对消费变化的解释力度大幅提高,说明收入水平的变化对许多居民的消费决策形成了直接约束。
值得注意的是,回归中人均可支配收入同比的系数均大于1,以第1列为例,收入增速每增加1个百分点将带动消费增速增加3.03个百分点,这一数值与我国居民储蓄率偏高的实际情况相差甚远。对于这一现象我们认为可能存在以下两种竞争性解释。
其一,收入增速中枢下移的过程中消费增速中枢表现为加速下移;
其二,宏观国民经济核算与微观企业经营统计口径之间存在差异。
我们对近年来全国层面的可支配收入增速与社零增速进行了对比,发现剔除2015年和2018年房地产及其他产业政策调整的影响后,随着可支配收入增速的趋势下降,社零增速下降的斜率的确更为陡峭。但与此同时,多数时间社零增速高于可支配收入增速,第一种解释无法说明这一现象。因此,我们认为第二种解释或是上述弹性估计偏高的主导性因素。
合并这些分析,在数据统计方法的影响下,表1中回归系数的大小所蕴含的现实意义有限;但考虑到近年来我国经济数据统计方法基本保持稳定,这一差异对上述回归系数的方向与显著性影响可以忽略不计。因此,我们依然可以得出疫情以来居民消费对收入弹性显著降低这一结论。
需要说明的是,上述回归的控制变量系数虽然在统计学意义上不显著(主要由回归样本量较低和控制变量显著性部分被关键自变量吸收导致),但其大致方向与现实中体感基本相符。
一方面,当地常住人口的流动与消费总量变动正相关,病床数对数也与消费增速正相关,即病床数越多、社会保障条件越好的地区居民的消费倾向越高。
另一方面,城镇化率越高的地区通常越接近经济增长的长期均衡,其消费增速往往更低,因此平均而言城镇化率系数为负;但2021-2024年这一系数为正,说明经济更为发达的地区消费降速反而更为明显,与现实中体感一致。
表2展示了疫情前后房屋价格变化与居民消费的关系。与表1类似,前两列分别为疫情前三年与后三年的分段回归,最后一列的交互项系数用于检验两个时间段消费弹性的差异是否在统计意义上显著。
表2第1列省会城市二手住宅价格指数同比系数不显著,意味着疫情前三年房价的变化对消费没有显著影响,而第2列表明疫情后三年房价的变化与消费的变化显著正相关,即房地产资产价格对消费表现为显著的挤入效应。2021年以来全国房价持续表现为下跌趋势,因而对消费产生了显著的负向影响。具体而言,省会城市二手住宅价格同比每下跌1个百分点,消费同比将下跌0.506个百分点。